THE ACTIVITY OF ZINC IN SOLID AI-Zn ALLOYS

V. PIACENTE AND V. DI PAOLO

Istituto di Chimica Fisica, Università degli Studi di Roma, 00185 Rome (Italy)

G. **D'ASCENZO** *Zsrituto di Chimkn Analitica. Unicersitd degii Saudi di Roma, OOZ85 Rome (ZraIy)* **(Received 3 November 1975)**

ABSTRACT

The activities of zinc in solid Al-Zn alloys in the temperature range 625-696 K were determined by means of a multiple rotating Knudsen source coupled with a mass spectrometer.

Thermodynamic properties, free energies, enthalpies and entropies of mixing, were calculated at 660 K and compared with previous values.

INTRODUCTION

The Al-Zn system has been the object of study by many researchers under the thermodynamic profile. Almost all the data reported in the literature are thermodynamic quantities relative to the liquid system $1-3$. The only data concerning the solid system are those selected by Hultgren⁴ and refer to the measurements of Al activity by means of the e.m.f.^{5,6}. Apparently, no direct measurements of the activity of zinc for the solid AI-Zn system are reported in literature, therefore, we thought it useful to perform some measurements of this parameter using a multiple rotating Knudsen cell coupled with a mass spectrometer.

EXPERIMEKTAL PROCEDURE

A Bendix time-of-flight mass spectrometer, Model 3015, was utilized together with a multiple-rotating molecular source formed by a cylindrical block of graphite in which five housings have been drilled closed with lids having a knife-edged central effusion hoie, 1 mm in diameter. Heating of the block was accomplished by radiation of a tungsten filament and its temperatures were measured using a cahbrated Pt/pt-10% Rh thermocouple placed in a small housing drihed to the centre of the cap of the biock Details of the experimen'd procedure and of the method are reported in a previous work'.

Samples of AI-Zn alloys were prepared by sealing in quartz ampoules under argon atmosphere intimate mixtures of weighted amounts of spectrographic pure elements; the ampoules were subsequently heated for $2 h$ at a temperature above the melting point of alnminum. The composition of the prepared alloys and their homogeneity were then checked by chemical and metallographic analyses.

Fig. 1. Plots of $log(I_{\text{Zn}}^{+}T)$ vs. 1/T for zinc pure and for zinc in Al-Zn alloys.

RESULTS

Aluminum-zinc alloys of eight compositions varying from 0.047 to 0.694 at.-% zinc were studied in four sets of experiments carried out in the temperature range 625–696 K by using two different rotating cells. During the vaporization of the alloys samples, $Zn(g)$ was the only species observed in the vapor phase, and, therefore, Zn^+ was the only ion species measured. In order to warrant the constancy of the composition of each single alloy during the measurements of the Zn^+ intensity, only the initial values measured in each vaporization were taken into account for the thermodynamic calculations.

TABLE I

ROTATING CELLS CALIBRATION COEFFICIENT VALUES (71)

² Reference cell.

TABLE 2

$Log(I_{2a}^+T) = A + B_iT$, IN ARBITRARY UNITS, AS A FUNCTION OF TEMPERATURE FOR VARIOUS COMPOSITIONS IN THE AI-Zn SYSTEM

66.

The $Zn⁺$ ion intensities measured during the vaporization of the alloys are plotted as $\log [I_{7n}^+T]$ vs. $1/T$ in Fig. 1. The intensity values have been corrected by a calibration factor γ_i which accounts for the possible differences in the geometry of effusion holes and their non-perfect alignment during the rotation of the thermostating block. Values of the y_i factors were determinated by loading, before each vaporization, the four crucibles with an amount of pure zinc and by recording the Zn^+ ion intensity corresponding to each crucible. The y_i values are reported in Table 1. A summary of the equation constants obtained by a least square treatment of **the** esperimental results **is** shown in Table 2. In all cases the errors associated to the constants are standard deviations.

THERMODYNAMIC CALCULATIONS AND CONCLUSIONS

The agreement found between the $\Delta H_T^{\circ} = 29.3 \pm 0.3$ kcal mol⁻¹, or $\Delta H_{298}^{\circ} =$ 29.8 ± 0.3 kcal mol⁻¹ (where the reported error represents the standard deviation) associated to the vaporization of pure zinc obtained by a second-Iaw treatment of our data and the selected value $(\Delta H_{298} = 31.17 \pm 0.10 \text{ kcal mol}^{-1})$ reported by Hultgren⁴, could be considered an indication of thermodynamic equilibrium conditions within the effusion cells.

The Zn activities in the alloys **at** different compositions can be calculated at a given temperature T , in the investigated temperature range from the ion intensitytemperature equation given in Table 2 using the relation:

$$
a_x = \exp\left(A_x + B_x/T\right) \left[\exp\left(A_0 + B_0/T\right)\right] \tag{1}
$$

where A_0 , A_x , B_0 and B_x are the constants reported in Table 2, for pure zinc and the Zn in the alloy at a composition x, respectively. The points reported in Fig. 2 are the zinc activity vaIues so evaluated at the average temperature of 660 K_ According to the phase diagram⁴, from 0.66 to 0.98 N_{Zn} we have considered the activity of Zn to be constant, owing to the existence of a gap of miscibility.

The activities of the component aluminum, at various compositions of the alloy, have been calculated in the usual way by a graphical integration of the Gibbs-Duhem equation. The values of $\alpha = \ln y_{\text{Zn}}/N_{\text{Al}}^2$ necessary for this integration were evaluated for the investigated alloys by using the relation⁸:

$$
\alpha = [\ln (A_x + B_x/T) - \ln (A_0 - B_0/T) - \ln N_{Z_0}](1 - N_{Z_0})^{-2}
$$
 (2)

The activity vaIues of both components so calculated at 660 K are given in Table 3 at O-l-mol fraction intervals across the system and are reported in Fig. 2 (solid line). In TabIe 3 are also reported the free energies, the entbalpies and the entropies of mixing. The ΔH_{mix} are evaluated by graphic integration of the relation⁸:

$$
\Delta H_{\text{mix}} = (1 - N_{\text{Zn}}) \int_{N_{\text{Zn}}=0}^{N_{\text{Zn}}=N_{\text{Zn}}} \frac{4.576(B_0 - B_x)}{(1 - N_{\text{Zn}})^2} dN_{\text{Zn}} \tag{3}
$$

The entropy values, ΔS_{mix} have been then calculated from the Gibbs-Helmholtz

Fig. 2. Activity of zinc and aluminum in solid alloys vs. zinc atomic fraction at 660 K (sketched line are referred to the values selected by Hultgren).

Fig. 3. Excess quantities of mixing in the Al-Zn system at 660 K \rightarrow , this work; \rightarrow -, selected **by Hultgren-**

TABLE 3

THERMODYNAMIC ACTIVITIES AND FREE ENERGY, ENTHALPY, AND ENTROPY OF MIXING IN THE Al-Zn SYSTEM AT 660 K

* Phase boundary.

equation. A summary of the results is reported in Fig. 3. A comparison of one data with those selected by Hultgren⁴ obtained from the aluminum thermodynamic data **at 653 K (sketched line of Fig_ 2) shows that our zinc activity values are not in agree**ment with those reported by Hultgren. In particular, they deviate in defect, especially **for the aiioys with high zinc content in the proximity of the miscibility gap. However, our activity values seem to be more reliable as they are based on direct measurements_**

As regards the thermodynamic data of mixing, especially the values for ΔH_{mix} **the uncertainty which could be attached to the derived values is rather hish. This degree of** *uncertainty is,* **however, to be expected if one considers the limited temper**ature range covered by the measurements. Therefore, we feel that further experi**mental work is necessary for the establishment of** ΔH_{mix} **for the system Al-Zn using** *a* **more direct technique (e.g., calorimetry).**

ACKNOWLEDGMENT

We are indebted to Prof. G. Balducci for his helpful suggestions.

REFERENCES

- **I G_ I_ Lutz and A- F- Voigt, 3_** *P/iys_ C-hem.,* **67 (1963) 2795.**
- 2 P. Boisaitis and P. M. Sullivan, *Trans. Met. Soc. AIME*, 245 (1969) 1435.
- 3 A. Yazawa and Y. K. Lee, *Trans. Japan Inst. Met.*, 11 (1970) 411.
- *4 FL iiultgren,* **R- L_ Orr, P. D. Anderson and K. K. KclJey,** *Selected Viihe~ af Thermodynamic* Properties of Metals and Alloys, University of California, Berkeley, Calif., 1971.
- 5 J. E. Hilliard, B. L. Averbach and M. Cohen, Acta Met., 2 (1954) 621.
- **6 H_ Corsepius and A. hluruter. Z_** *Ph_xs_ Chem_, 22 (1959) I _*
- *7 G_* **De** *Maria.* **V_ Piacentc, Buli. Sot_** *Chim- Belg., 8 1 (1972)* **155.**
- 8 C. Wagner, *Thermodynamics of Alloys*, Addison-Wesley, London, 1952.